Intervals of Permutation Class Growth Rates
نویسنده
چکیده
We prove that the set of growth rates of permutation classes includes an infinite sequence of intervals whose infimum is θB ≈ 2.35526, and that it also contains every value at least λB ≈ 2.35698. These results improve on a theorem of Vatter, who determined that there are permutation classes of every growth rate at least λA ≈ 2.48187. Thus, we also refute his conjecture that the set of growth rates below λA is nowhere dense. Our proof is based upon an analysis of expansions of real numbers in non-integer bases, the study of which was initiated by Rényi in the 1950s. In particular, we prove two generalisations of a result of Pedicini concerning expansions in which the digits are drawn from sets of allowed values.
منابع مشابه
Large Infinite Antichains of Permutations
Infinite antichains of permutations have long been used to construct interesting permutation classes and counterexamples. We prove the existence and detail the construction of infinite antichains with arbitrarily large growth rates. As a consequence, we show that every proper permutation class is contained in a class with a rational generating function. While this result implies the conclusion ...
متن کاملGrowth Rates of Geometric Grid Classes of Permutations
Geometric grid classes of permutations have proven to be key in investigations of classical permutation pattern classes. By considering the representation of gridded permutations as words in a trace monoid, we prove that every geometric grid class has a growth rate which is given by the square of the largest root of the matching polynomial of a related graph. As a consequence, we characterise t...
متن کاملOn the tenacity of cycle permutation graph
A special class of cubic graphs are the cycle permutation graphs. A cycle permutation graph Pn(α) is defined by taking two vertex-disjoint cycles on n vertices and adding a matching between the vertices of the two cycles.In this paper we determine a good upper bound for tenacity of cycle permutation graphs.
متن کاملSimple permutations of the classes Av(321, 3412) and Av(321, 4123) have polynomial growth
A permutation is called simple if its only blocks i.e. subsets of the permutation consist of singleton and the permutation itself. For example, 2134 is not a simple permutation since it consists of a block 213 but 3142 is a simple permutation. The basis of a class of permutations is a set of patterns, which is minimal under involvement and do not belong to the permutation. In this paper we prov...
متن کاملGrowth rates of permutation grid classes, tours on graphs, and the spectral radius
Monotone grid classes of permutations have proven very effective in helping to determine structural and enumerative properties of classical permutation pattern classes. Associated with grid class Grid(M) is a graph, G(M), known as its “row-column” graph. We prove that the exponential growth rate of Grid(M) is equal to the square of the spectral radius of G(M). Consequently, we utilize spectral ...
متن کامل